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ABSTRACT
Despite incontrovertible scientific evidence to support a round
Earth, GIS software implementation typically models the Earth
with flat map projections. This choice has consequences that
vary from mild to severe. This paper explores solutions that
range from moderate measures to correct for map projection
errors to radical revisions of standard practice that place all calcu-
lations on the ellipsoid. On examination, the best practice requires
a distinct projection choice for each geometric operation. Multiple
reasons, from the technical to ethical, justify revised practices and
increased vigilance for the errors induced by inappropriate
projections.
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Introduction

The Earth is round, and that fact should surprise nobody. Whether general acceptance
occurred 500 or 2000 years ago (Snyder 1987, p. 3) makes little difference to the current
practice of geographic information technologies. Despite the overwhelming evidence
for a round Earth, the software practices and technology of geographic information
systems (GIS) remain firmly attached to flat surfaces, indexed by Cartesian coordinates.
Tobler remarked some years ago that none of the textbooks on spatial analysis treated
the Earth as ‘homeomorphic to a sphere’ (Tobler 1993, p. 19). Blindness to the obvious is
thus not limited to software designers, but this paper will direct its attention to the
software community and GIS practitioners. As one of the guilty parties who designed
software in a prior era, I will discuss some of the reasons why the original developments
were coded in planar geometry. Then I will describe the disadvantages and limitations of
the current approach, and finally discuss the remedies and changes required to repair
the damage and to start calculating on a round Earth.

Calculating on a plane

It is accepted practice to calculate in planar Cartesian coordinates in many fields from
scientific disciplines such as physics to practical settings in engineering surveying.
Analytical geometry, like all technology, has multiple origins. Descartes (1637) made
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significant contributions that established the notation and procedures that have
become common (and therefore do not require citation by all but the most punctilious).
For example, the naming of the coordinate axes as x,y,z was introduced in this monu-
mental book (Descartes 1637, p. 10). Descartes offered his mathematical presentation as
a demonstration of his scientific method, one based on foundationalism. Descartes
chose the plane to demonstrate the application of algebraic (hence numerical) treat-
ment to the realm of geometry. This discipline had firm rules about construction limited
to straight edges and compasses, a non-numerical approach. Descartes was not moti-
vated by any urge to model the Earth, although the word geometry derives etymologi-
cally from Earth measurement.

Subsequently, analytical geometry became an underpinning of many fields in science
and engineering. A sign of this implicit acceptance comes in the school curriculum; this
technology is introduced to young students around the world. What was a matter of
natural philosophy became a routine matter for primary students [for instance: the
controversial Common Core in the United States introduces planar coordinate systems
in year 5 (Common Core 2015); the English National Standards (Department of
Education 2013, p. 29) introduce 2D coordinates in year 4]. Analytical geometry is taught
in the planar case, typically, using just x and y axes; perimeter and area calculations are
taught in primary school – in the case of England, year 5 (Department of Education 2013,
p. 36). As a mathematical exercise, it makes sense to work with simple models. Planar
geometry allows simple calculations, providing a good fit for elementary teaching.

Unlike the Earth, maps are flat, a property inherited from the various support
technologies from parchment to printing presses to handheld tablet screens. Centuries
of practice have established means to reduce measurements observed in the field (on
ship or on land) to a portable planar surface. Mapping technique absorbed a series of
technologies all dependent on graphics arts, from etching plates, lithography, and
photographic reproduction. Each has been just as flat as its predecessor. Therefore,
when early developments occurred in digital cartography, adopting a flat surface in
numerical form was no big surprise. Planar geometry was embodied directly in the
orthogonal axes of digitizer tables (Boyle 1964) and in the software to reproduce maps
on line-printers (Horwood et al. 1963). The choice had already been made, since these
techniques were all built on digital conversion of the stock of printed maps.

The first generation of automated cartography worked for the most part on single
map sheets, not on massive worldwide databases. For the period, the choice was well-
justified. Even the Canada Geographic Information System (CGIS) (Tomlinson 1968), with
a vision to cover a continental extent, stuck close to the planar model of its raster
scanner since each vector was reduced to incremental coordinates (Tomlinson 1998, p.
23). Tomlinson attributes these codes to Galton, though they are more commonly
termed ‘Freeman codes’ in the computer graphics literature (Freeman 1961). Wherever
the origin, this technique lies on the plane.

World Data Banks and cartographic projection software

Not all data remained tied to a flat map. Early GIS and automated cartography built
archives of data for whole continents and soon the whole world. In Canada, CGIS was
conceived to cover a continent with a spatial index (Morton 1966). This index divided
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into degree-based units (in the illusion of planar geometry), then, inside each map sheet,
it used planar coordinates for the linework (in incremental coordinates tied to a pixel on
a flat map). Therefore, the actual area measurements were made in planar mode, not on
a sphere or ellipsoid.

In the same period, the US Central Intelligence Agency (CIA) developed World Data
Bank I (WDB-I) in a very short period to respond to some short term needs (Schmidt
1969). Separate map sheets were digitized, and back-projected out of their specific
projections into a homogenous framework of latitude-longitude. My own work was
influenced by access to WDB-I, as I set out to convert it to a topological data structure
(Chrisman 2006, p. 105). Working with this source, and its follow-on WDB-II (Anderson
et al. 1977), led me to remark that WDB-II was ‘no more structured than spaghetti on a
plate’ (Chrisman 1974a, p. 167). However, I did not give them credit for representing the
whole planet in an ellipsoidal frame of reference (latitude-longitude in radians). [The
datum for WDB-I was not clearly specified, and its accuracy levels were probably not
high enough to distinguish between the various geodetic datums of the period.] The
CAM software (written by IBM for CIA) provided elaborately detailed sixth-order expan-
sions for ellipsoidal projections (personal inspection of the source code, 1975). Still the
goal was to produce printed maps using traditional reproduction technologies. Scribing
onto peel-coat material was the preferred output, so it was not important to fill
polygons. A cartographer would lift the inside of the polygon as required for the
particular color scheme. This was an era of computer-assisted cartography, not attuned
to thematic mapping driven by attribute tables, let alone a full GIS.

In my own software, POLYVRT (Chrisman 1974b), I implemented the capability to
project these data sources into planar coordinates so polygons could be used by the
existing cartographic packages of the era. None of this software (such as SYMAP) had
any projection capability. I implemented projections on a spherical Earth model, using
the formulae from textbooks such as Richardus and Adler (1972). Considering that the
databases derived from sources with errors in the tens of kilometres, it made little sense
to insist on geodetic accuracy. I used single-precision code for POLYVRT and much of my
later work. On the 60-bit floating point hardware that I used for POLYVRT, that made for
very little limitation. However, as the industry converged on a 32-bit word, single
precision set practical limits on resolution and project extent (Chrisman 1984).

Software for cartographic projections (and their inverses) became one of the ele-
ments of the GIS toolkit. Snyder’s (1987) magisterial collection of map projections was
written to support this development. The General Cartographic Transformation Package
(GCTP) code written by Elassal (1987) under the direction of Snyder permeated the
industry, in part because it was placed in the public domain. These efforts used the full
ellipsoidal derivations of cartographic projections required for topographic mapping.
GCTP calculated entirely in double precision (64 bit) floating point, which was consid-
ered somewhat extravagant (for the era) though technically valid. Few software envir-
onments maintained 64-bit floating point resolution in storage until much later.

Coding early GIS

The software packages called GIS emerged in the 1980s from this background. The
prototype ODYSSEY was written on timesharing computers like the Digital Equipment
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VAX (Chrisman et al. 1992). Storage was limited to single precision (effectively six
digits of resolution), but we found that we needed to calculate intersections in
double precision to avoid overflow and other computational issues. We used planar
algorithms, expecting each project (and database) to be in some local coordinate
system and projection. ODYSSEY implemented basic projections intended for visuali-
zation rather than precise georeferencing. Following the conversion to NAD83, I
converted to much more sophisticated implementations in full 64-bit floating point
and code from GCTP.

As far as I can determine from outside the shield of non-disclosure agreements and
license conditions, the commercial packages of the 1980s (ARC/INFO, System 9,
Intergraph MGE) were just as limited to single precision floating point storage in the
early implementations. Planar geometry was the rule, with only limited dissenters.
Lukatela (1987) presented a geodetically adept computational framework called
HIPARCHUS, to be discussed below.

Current situation

Since the mid-1980s when the first generation of GIS software emerged on workstation
platforms, the speed of computing devices has increased by a factor of many thousand.
The conceptual underpinnings of the software have barely budged. Computation still
relies on projected planar coordinates. Official coordinate systems remain entrenched
where they were in the 1930s, based on conformal map projections. Eventually, most
software platforms moved to double precision, for reasons of resolution.

One development in the 1990s bears some mention. GIS implementations began to
rely on greater integration with database engines. To provide for indexing, floating point
representations created troubles best solved by some form of integer coordinates. For
example, Oracle Spatial originally used a latitude-longitude octree called the Helical
Hyperspatial Code (Varma et al. 1990); ArcSDE imposed integer representation of coor-
dinates. Granularity was often established by default, despite some consequences on
project extent or resolution. In most cases, the database indexing requirement con-
strained choice of projections. The index was built one time, based on a particular
reference frame. This index would not survive local rotation, often the result of changing
projection. This limitation persists in more recent developments, as far as can be
determined outside the cloak of product secrecy.

Representing global coordinates

As in many situations, convention plays a huge role in developing standards for geo-
graphic coordinates. ISO (International Standards Organization) and OGC (Open
Geospatial Consortium) have combined to codify the practice of spatial referencing by
coordinates (ISO 19111:2007, OGC (2010)).

The convention of positioning objects on the Earth with two angles dates back to
Hipparchus (second century BCE) and Claudius Ptolemy (150 CE). Latitude was easier to
establish than longitude. The current system became worldwide with the 1884 interna-
tional agreement on the Meridian of Greenwich (Howse 1985). This angular notation has
the weight of convention, but it does have peculiar numerical properties. Trigonometric
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functions (such as tangent) return useless (infinite) results at right angles, and therefore
programmers must pay attention to avoid extraneous error messages and wild results.

Certain programmers and GIS users over the years have blurred the distinction
between a geodetic coordinate system and a Cartesian, projected coordinate system.
If degrees are treated as distances, a distorted pseudo-projection results (often termed
Plate Carrée). Of course, distances calculated by the Pythagorean Theorem from angular
measures bear no relation to the Earth, and areas in square degrees are meaningless.
This has not stopped whole scientific communities built upon around dubious databases
of these so-called ‘square degrees’ (references suppressed to protect the guilty).

Lukatela (1987, 2000, p. 118) has described a scheme for representing angular values
of a geodetic point by the direction cosines of the ellipsoid normal. With this represen-
tation, useful properties can be computed without trigonometrical functions. In addi-
tion, fewer checks for valid operations (division by zero; infinite results) are required.
While this representation may be technically superior, adoption remains limited.

Much of modern geodetic calculations are not carried out with angular measures, but
on a Cartesian triaxial system, centered on the center of mass of the Earth, measured in
metres (IERS 2013). Called the International Terrestrial Reference System (ITRS), it is
implemented by the International Terrestrial Reference Frame (ITRF). ITRF is regularly
redefined as more precise measurements become available. The international agree-
ments behind ITRS and ITRF only date from 1991, and adoption by mapping authorities
lagged due to attachment to local datums from prior eras. One tricky part of ITRF is the
‘no-net-rotation’ condition, which is the attempt to remain Earth-Centered, Earth-Fixed
(ECEF) in the face of tectonic movements. ITRF removes the safety of a firmly anchored
brass marker as the origin of surveying.

Geopositioning using satellite methods works in a Cartesian ECEF framework, since
timing signals provide distances for trilateration. Geodetic XYZ does not recognize the
surface of the ellipsoid in any special way. Distances calculated using Cartesian measures
will cut through land, water, crust, mantle or atmosphere with no distinction. There is,
consequently, no surface on which to measure area. It would take some massive
rethinking of cartographic conventions to switch to Cartesian ECEF for GIS operations.
Results obtained in geodetic XYZ are usually converted to angular coordinates on an
established datum, then usually converted to projected coordinates (confusingly called
xy (or more properly, Easting and Northing), though decidedly not on the same geodetic
axes).

Through some kind of collective amnesia, after all these manipulations the resulting
projected coordinates become an infinite plane. The finite extent of the Earth is for-
gotten. As Tobler (1993, p. 19) notes, working on the sphere is counter-intuitive:

Should everyone know that the circumference of a circle increases as two π times the sine of
the radius, (which means it eventually goes to zero), and that the area of a circle increases in
proportion to the square of the sine of one half of the circular radius? Or that the
circumference of a circle on the surface of an ellipsoid depends not only on the circle’s
radius but also on where one puts the center (Blaschke 1949)?

Many features of the actual round Earth overrule the simplicity of planar assumptions.
This essay will review what goes wrong when GIS data gets separated from the Earth
model, then present some solutions.
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What goes wrong

Planar coordinate systems inevitably distort something (Grafarend et al. 2014, p. 1).
Projection choice is fundamentally a choice of which property to preserve by distorting
everything else. It also determines how difficult it will be to correct these distortions.

Mercator-bashing has become a routine phenomenon in certain sectors. Journalists
continue to present true areas as some kind of revelation (Taylor 2015). Sadly, none of
this attention reduces the dead weight of cylindric map projections on the GIS sector.
Mercator is not the only projection that distorts.

There are a few prominent cases where an error in understanding map projections
has led to major mistakes. On 3 May 2003, The Economist (2003a) published an article
showing circles around the missile base in North Korea. Due to a fundamental misun-
derstanding of the Mercator projection, these circles on the map presented a gross
underestimate of the range of these weapons systems (still not operational according to
the article). The Economist (2003b) issued a correction in 12 days with the subtitle ‘Flat-
earth thinking’ (with the result that the original mistake is no longer visible apart from
bandit copies around the network). The Economist stayed with their projection choice,
forcing a radically different geometry for missile ranges over the North Pole. A switch to
an azimuthal equidistant projection would have permitted them to retain the circles of
missile range. In an article dated 12 December 2012, The Economist (2012) had switched
to an azimuthal for their repeat coverage of this topic. Figure 1 shows a similar image
(from a Creative Commons source). Washington Post (Fisher 2013) also chose an
azimuthal projection. Perhaps the outcry of geospatial professionals may have actually
reached through to the journalism sector.

There are other major policy issues that are influenced by calculating on the wrong
surface. At the global scale, Usery and others (2003) consider the errors that accumulate
in global datasets due to raster resolution interacting with projection issues. Many more
local policies are implemented by a payment based on the area of the land parcel in
question. As Nieverglet (1997, p. 2) illustrates with a quotation from the Rhind papyrus,
the pharaohs of Egypt were concerned with measurement of area around 3700 years
ago. Most North American jurisdictions assess a portion of property tax based on area of
parcel. In the opposite fiscal direction, the Common Agricultural Policy of the European
Union provides subsidies to farmers based on eligible land area (European Commission
2013; EU 2013). The ‘Single Area Payment Scheme’ remains in force through 2020 to be
replaced by a ‘Basic Payment Scheme’ (EU 2013). Curiously, the massive regulation
provides no definition for hectares or how they are to be measured. In England, the
name change has already occurred, tying payments to hectares of land and other
conditions (RPA 2015). Rural Payments Agency (RPA) mapping procedure appears to
operate on the UK National Grid (a Transverse Mercator), although RPA will accept area
measurements (including slope area) based on independent certified surveys (RPA 2015,
Annex 3, p. 49). Thus, England may have a patchwork with some areas on a projection
plane and other areas from field survey. It is unlikely that fields on the margins of the
Transverse Mercator will opt for field survey if the result is smaller than the inflationary
distortion provided by the projection. Those in the center of the zone will have an
incentive to pay for a survey. There would be a neat research project to verify if this
incentive is strong enough to influence behavior.
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Harmel (2009, p. 29) reports on the case of France in the period of the single area
payment. Here, the subsidies were based on area measurements calculated on the
national coordinate system, a Lambert conformal conic. In the conversion to the revised
national coordinate system (RGF 93), subsidies to the agriculture sector were reduced by
17 million euros. This reduction in payments was due to reduced scale error in the
projection, particularly in the south of France and Corsica. Presumably, many other
countries would have similar savings to make, but the magnitude is unreported and
unexamined.

Scale factors

The largest impact of map projection comes from scale factor issues (for more treatment,
see Chrisman and Girres 2016). Projections distort by manipulating the scale of the Earth
in various ways.

The official coordinate systems adopted around the world favor angles and shapes
over distance and area (Chrisman and Girres 2016). The historical record links the
adoption of these conformal projections to gunnery calculations during the Great War
of 1914–18 (O’Keefe 1952). Both the old and new projections for France (cited by Harmel
2009) are Lambert conformal conics. When used as the base for GIS, the properties of

Figure 1. North Korean missile range, depicted on wikimedia commons using an orthographic
projection. Produced by ‘Cmglee’ (2013). Creative-commons attribution-share alike 3.0 license.
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perimeter and area are distorted with a known and avoidable error. In addition, toler-
ances and thresholds (as in buffers) are different from their intended ground distances
(as in the North Korean missile cases). All these errors can be modeled by scale factors
with a known and computable spatial distribution. These effects may not be very large
when projection guidelines are carefully observed. However, they remain. The scale error
on the standard projections of France was considered reasonable by the professionals
who recommended adoption. Perhaps they did not consider how many public decisions
might be based on that extended projection zone. The magnitude of that decision is
around 17 million euros for just one subsidy program.

Berk and Ferlan (2016) confirm the magnitude of area distortions in their exhaustive
study of all the parcels of Slovenia. The Transverse Mercator projection official coordi-
nate system overestimates the western side of the country by 1.85 m2/ha and under-
estimates along the central meridian by 1.99 m2/ha.

In a similar manner to the more common conformal case, an equivalent projection
removes area distortion by manipulating the distortion of other properties. Unlike
conformal projections, equal-area projections have different scales in different direc-
tions. Hence, it is much more complicated to correct distance and azimuth calculations
on an equal-area projection.

To my knowledge, no current GIS software provides a tool to generate a surface of
distance scale errors or area scale errors based on projection parameters. Instead,
properties calculated on the projection plane are presented as true measures despite
solid evidence to the contrary.

Straight lines

Another issue concerns the concept of straight lines, a concept fundamental to geo-
metry for thousands of years. The definition of a straight line is unambiguous in a planar
context. In fact, the whole conceptual concentration on straight lines may come from
the use of tabletop models of geometry (originally implemented in the sand, according
to ancient practice). By unwritten computer-graphics convention, unless otherwise
specified, the gap between two points is assumed to be ‘straight’. Cartographers have
accepted the null hypothesis of straight lines without much debate (notably, Peucker
1976). On the ellipsoid, the simplicity of ‘straight’ disappears (Deakin et al. 2011).

To remind the reader, and to move in stages, consider spherical geometry as an
intermediary. On the sphere, the shortest path between two points (P1, P2) is along a
‘great circle’ – the intersection of the sphere with a plane P defined by the two points
plus the center of the Earth. All great circles have the same circumference and curvature
(it is a sphere). Another neat property is that the perpendiculars at the two end points (a
line toward the center of the Earth) are contained on the plane Q, and thus determines
the shortest path in the field. Basic surveying uses a plumb bob to ‘level’ the instrument
with respect to this local perpendicular.

The ellipsoid brings some additional complexities. Sections through the ellipsoid are
ellipses, though the equator and other parallels of latitude remain circular (Deakin 2009).
By definition, the distance to the center of the Earth varies from a maximum on the
equator to a minimum at the poles. Polar flattening is around 23 km, big enough to
make a difference in surface distances and areas. Meridians remain easy to model, but

644 N. R. CHRISMAN



other orientations of lines get more complex. At the points A and B (not at the same
latitude), the two local perpendicular lines will not meet at the center of the Earth or at
the same position on the polar axis (Deakin 2009). Consequently, there are two ‘normal
sections’ based on the two local perpendiculars; each is an ellipse on its distinct plane
(PA, PB) (Figure 2). These two lines do not coincide, except in special cases like the
equator or meridians. These two normal sections are, neither one, the shortest path. The
distance along the normal section ellipse can be estimated by integration, so it is not a
shortcut to distance calculations. A third elliptical section – the ‘Great Elliptical Arc’ – can
be obtained by including the center of the Earth and the two endpoints, in keeping with
the procedure for great circles. It is not the shortest path, but it does trace the ground
footprint of satellites (constrained to orbit the center of mass of the planet).

The shortest path is termed the ‘geodesic’. It traces the locus of normal to the surface,
so it coincides with each normal section near their respective endpoints. In between the
endpoints, the geodesic on the ellipsoid follows an S-shaped curve often contained
between the two normal sections, but not necessarily (see Figure 2 for an exaggerated
illustration). The length of the geodesic can be calculated, but it is certainly not ‘straight’
in the classical meaning of that term. It does not have a neat analytical form to aid in
calculating intersections and other properties.

The distance between the two normal sections is not large, though it depends on
latitude difference and location. In the case of the Black-Allan Line (on the border
between Victoria and New South Wales, some 176 km long) the two normal sections

Figure 2. Geodesic from A to B (in red dashed line) between two normal sections. The plane PA
including the normal at A is shown in grey.To render the lines distinguishable, the ellipsoid has been
dramatically flattened. Source: Modified from (Deakin 2009); with kind permission of the author.
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are 0.03 m apart (Deakin et al. 2011, p. 13). Following either normal sections or the
geodesic, ellipsoidal calculations are required to obtain the distance between two
points. As distances increase, geodesics diverge up to a maximum (equatorial dimen-
sion) then converge on the antipodal point. In the spherical case, the point on the
opposite side of the sphere can be reached on any plane that passes through the axis
between the two points. Thus, the whole sphere is on the ‘shortest’ path (the longest
possible distance on the sphere). The ellipsoid is different, due to the flattening. In the
equatorial case it is clear to see that an azimuth to either pole will be shorter than
around the wider equator (Rapp 1993, p. 41).

Geodesics on the ellipsoid also have a curious property as they continue on past their
end point. While great circles close neatly back on the starting point, non-meridional
geodesics on the ellipsoid wander off in a spiral (Rapp 1993, p. 46). This infinite behavior
is more similar to the infinite path of straight lines on the plane, though ellipsoidal
geodesics intersect on each rotation.

In the recent geodetic literature, Karney (2013, p. 44) defines straightness as a
property on a projection (local azimuthal at every point). This brings us right back to
the plane, even for the most basic definition of geodesics. To my knowledge, no GIS
software bothers to consider the path of ellipsoidal geodesics. Even Hipparchus
(Lukatela, 1987) uses local spherical models with great circles. By some reports,
certain database implementations use spherical great circles as well when data are
referenced in angular coordinates. Straight lines on projections are applied in most
cases despite clear evidence of distortions. The mistake of the North Korean missile
map is not so unusual.

Summary of problems

● Geometric properties calculated by a GIS on planar projections will have errors that
are predictable and preventable.

● The current affordances of GIS software packages encourage laziness with respect
to projection error.

● Insufficient tools are provided to correct known errors.

Simple remedies

This section will set out some simple fixes that stay within the current structure of
systems and current standards. A following section will consider more radical solutions.
This treatment will review a variety of existing solutions, and provide citations to other
sources for full mathematical treatment. Otherwise the mass of formulae would burden
the text and diminish the breadth of the argument.

The first and simplest solution is simply to warn users. Disclaimers and dense ‘Terms
of Use’ contracts pop up in our daily routine, enjoined by lawyers everywhere (Hunter
and Goodchild 1993, p. 59). At a minimum, GIS software should say something like
‘Estimates of distance and area are approximations calculated on a projection plane, and
some adjustment may be required to derive more accurate values.’ But such a statement
begs the question. It serves lawyers more than readers. If there is a known effect, why is
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it not treated? If you went to all the effort, don’t you want the real answer? These errors
are not random or unpredictable; the effect is totally understood and programmable.

A more aggressive stance could be copied from the data quality setting. Hunter and
Reinke (2000) suggested a scheme to prohibit certain operations if the data quality is
insufficient. It would be simple enough to prohibit the calculation of areas, for example,
unless the projection was equivalent. Few software systems have implemented anything
quite so complex. The current permissive approach requires other solutions.

Correcting for known error

The errors introduced by projections can be corrected. A local scale factor can be calculated
point by point, and therefore corrected estimates can be produced. For distance measures,
the length calculated on the projection plane can be adjusted, larger or smaller, depending
on distance from the standard parallels or central meridian – depending on the specific
projection used (Vincenty 1985, Girres 2011, 2012). Sampled at the points along a line, the
variation in scale factor can be approximated if the sampling is relatively dense and
uniform. Long segments aligned with a meridian or parallel might require a bit more
treatment, but generally the result should be adequate with an estimate at either end.

Adjustment of measurements according to scale error is commonplace in surveying
(not just for the local error on the ellipsoid, but also raised up to ground level), yet
somehow the practice (grid to ground) never penetrated GIS software. This deficiency
may contribute to the distrust of GIS calculations in the surveying community. In the
early period, GIS results could be defended as approximate, and fit for a different set of
users. There is no reason now to continue this logic. Computing models should return
the actual answer, not just what is easy to program. Using an inadequate model limits
the tools to approximate data sources. Sadly, the knowledge of each discipline in the
geospatial sector is not fully shared with the other participants. This lack may be due to
different training pathways, but after 40 years, ignorance is no excuse.

For some operations dependent on distance, the parameters used in the calculation
should be adjusted. For example, the width of a buffer should be modified to adjust for
the local distortion of distances. This value would change across the data coverage,
making some complexity, but it would resolve the projection scale issue. These adjust-
ments will be small, and some will argue that the intent of a buffer is not so precise.
However, it is not the programmer’s role to make that decision. GIS software should
deliver what it advertises. Any treatment of uncertainty should not be compounded by
adding uncertainties due to flaws in the numerical model.

Adjusting area estimates
Adjustment for errors in area are also possible, though more complicated. Taken at a
point, like the distance factor, the error in area (for conformal projections) is approxi-
mately twice the distance error (CERTU 2010, p. 4, Girres 2012, p. 112). The squared term
tends to be much smaller in typical applications.

eA¼ 2 � eL þ eL2; (1)

where eL = linear error; eA = area error factor.
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Unlike a distance calculation, area extends far away from the boundary points.
Accumulating the average projection error around the perimeter leaves the vast inside
of some polygons unsampled. Girres (2012) took the conservative approach of estimat-
ing the true area of a polygon by tessellating into a series of triangles on the ellipsoid
and calculating the area using geodetic trigonometry. This approach moves past the
adjustment of area to the topic of a subsequent section (abandoning projections
altogether).

Using projections intelligently

Some of the difficulties cited above could be resolved by adopting different projections.
The conformal properties of current official coordinate systems permitted simple hand
calculations for surveying or artillery, but do not serve all the functions of a GIS. If the
principal geometric concern is area (as in a crop estimation service or a forest inventory),
then an equivalent (equal-area) projection may be the simplest solution (for example,
Balcerzak and Pedzich 2007). For many statistical purposes covering the conterminous
United States, the most common projection is Alber’s Equal Area imported from nine-
teenth century work in Germany (Snyder 1987, p. 98). This projection (in its typical
configuration for the 48 states) has differential linear scale error up to about 1%
between the standard parallels, and a bit more at the northern and southern extremities.
To make the area work out correctly, the scale along parallels compensates for the scale
on meridians. Therefore, correcting for distance calculations on this projection is com-
plicated. But, if the goal is areas, there is no need for correction. The main requirement is
to insert sufficient points along ‘straight’ lines to ensure that they approximate the right
geometry (Gillissen 1993). Most GIS avoid this step.

The European Union has adopted a Lambert Azimuthal Equal Area (LAEA) projection
to serve a similar role for coverage of the European member states (though not
extending to overseas territories) (INSPIRE 2010, p. 7). Sadly, the INSPIRE working
group adopted too many incompatible systems. They also allow the major two con-
formal mapping systems (Lambert conformal conic and Transverse Mercator), not sur-
prising since these are the common choices for national official mapping. These
conformal mapping projections require adjustments such as those described above.

The INSPIRE working group also condone (in some manner) the use of the non-
projection called ‘Plate-Carée’ since it has come into use on (unnamed) internet viewing
services. Planar calculations on this surface are wrong in every way imaginable, and bear
no useful relationship to the Earth. In other words, even the power of 26 nation states
cannot set a standard which opposes the economic power of an international corpora-
tion of global reach. This is particularly distressing when said corporation makes a
selection without scientific merit. Yet, these sub-optimal choices become enshrined as
standards, and we must work around them for decades to come. The First Mover effect
is frighteningly powerful.

For other procedures in a GIS beyond area calculation, a change in projection is not a
full solution. For buffer calculations, the appropriate projection would be equidistant.
The problem with this class of projections is that the equidistance property is only valid
from one point. Thus, there is no single projection that will permit correct buffer
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calculations without considerable re-scaling of distances. As the North Korean missile
case shows, buffers of geodetic proportions require careful treatment.

Abandoning projections altogether

While it is possible to counter each deficiency of map projections, the result becomes a
patchwork. It is time to consider the more radical solution of abandoning projections for
all calculations. I hasten to clarify that projections would remain important for display
purposes. But if the need for specific kinds of calculations is removed, the choice of
projection can be tailored to the requirements of visualization instead of calculation.

This paper will consider four calculations that together provide adequate primitives
for the computational geometry of GIS. In most of these cases, there will be variants to
deal with the distinct kind of straight lines on an ellipsoid. The first two are simple
distance and area, the classic measures considered in projection design. These two are
not enough; fundamental GIS is also built on set theory queries implemented by map
overlay procedures. These involve line intersection as the basic geometric step. Other
operations calculate the distance from a line to construct buffers and similar objects. As
announced previously, in an aim for brevity this article will not include the detailed
formulae. They can be found in the sources cited.

Distance on the ellipsoid

Calculating the distance between two points on the ellipsoid is termed the ‘inverse’
problem (or the ‘Gauss inverse’). Perhaps due to the navigational connections or the
terrestrial surveying background, the ‘direct’ problem determines the end-point of a
geodesic given an initial azimuth and a distance from a starting point. Both problems
have been treated by geodesists for over 200 years (for example, Clairaut 1743, Bessel 1825,
Gauss 1828, Helmert 1884, Rapp 1993). This distance typically follows the shortest path, the
geodesic. Distances along other lines, such as normal sections, can also be computed.

In recent years, many programmers have used Vincenty’s (1975a) iterative solution,
derived from Rainsford (1955). This requires at least six trigonometric function calls per
iteration; convergence takes two to four iterations (Vincenty 1975a, p. 93) except in
antipodal cases. As the author admitted (Vincenty 1975a, p. 92), the solution is not
accurate for nearly antipodal points, but it provides a decent solution (less than 1 mm) in
more common cases (Vincenty 1975a, p. 90). Vincenty (1975b) worked out some solu-
tions for antipodal points, but did not publish the paper. Rapp (1993) and others have
resolved most of the numerical issues to deliver stable solutions.

Karney (2011) has developed numerical procedures that expand the series a few more
terms, and reduce the calculations by careful grouping of terms that can be precalcu-
lated. Karney increased the accuracy to 15 nm, and eliminated the convergence pro-
blems (Karney 2011, p. 52). On a computer of the current era, Karney (2013, p. 53)
reports 2.3 μs on average for the inverse problem versus 1.3 μs for Vincenty’s algorithm
on the same configuration. Just for reference, on the computer used by Vincenty in his
tests (an IBM 7094 – already obsolete in 1975), the memory cycle (time to retrieve one
element) was 2.2 μs. In other words, one simple memory reference took as long as it
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now takes to estimate distance to the nearest micrometer. For the purposes of a GIS
operating on ellipsoidal geometry, the calculation of distances is no longer a barrier.

Area on the ellipsoid

Area calculation on the ellipsoid is more complicated, as Lukatela (2000) has explained.
The well-established planar approach slices a polygon into trapezoids (with parallel rays
heading off to one axis or another). On the ellipsoid, latitude and longitude can be
treated as pseudo-orthogonal axes creating pseudo-trapezoids to the Equator. However,
the geodesic (diagonal) boundary of this trapezoid is not a straight line, so the area
between the geodesic and the Equator has to be approximated by integration
(Danielsen 1989, Sjoberg, 2006). Kimerling (1984) derived the areas of pseudo-trapezoids
through approximations calculated on the UTM projection. This strategy defeats the
purpose to calculate directly on the ellipsoid.

In the geodesy literature, a few publications provide a direct solution following two
distinct strategies. The first, more traditional, approach works on an ‘authalic sphere’
with corrections for the ellipsoid. Danielsen (1989) draws an ellipsoidal pseudo-trapezoid
formed by the boundary line in question, the equator, and the two meridians connect-
ing to the end points of the line. All four lines are geodesics on the ellipsoid. Danielsen
maps them onto a sphere (the reduced latitude) iteratively to preserve the azimuth. The
area is accumulated on the appropriate radius. He provides the basic formulae to
calculate to 1 m2 (third order terms in the iterative procedure). Working directly on
the ellipsoid, Sjoberg (2006) improves on these results. Karney (2013, p. 50) worked out
the terms to higher order and recast them as trigonometric sums. As is often the case,
the estimation of these terms can be unstable when distances are short- very much the
case of most GIS applications. Karney mobilizes the work of Bessel (1825) to limit this
issue. This technique involves integration where each term invokes four trigonometric
functions and some multiplications and divisions in a traditional series expansion. The
computation will cost more than the planar case, for certain.

Lukatela (2000) follows another strategy, based on a tessellation of the ellipsoid into
Voronoi-like cells, each of which is a spherical facet with a locally adjusted radius. This is
the Hipparchus model (Lukatela 1987). In this model, each cell is a composite of
spherical triangles – bounded by great circles, whose area is easily derived. Unlike the
other more mathematically oriented publications, Lukatela (2000, p. 125) provides a full-
scale test of his calculation algorithm. The area of his 2432 Voronoi cells falls short of the
expected total for the Earth by 45 km2 or one part in 1.1x107. When applied to the
Digital Chart of the world data for land and ocean, the algorithm evaluated 1.3 × 106

triangles. The sum of land + ocean fell short by 4160 km2, about 100 times larger than
the discrepancy with the smaller set of objects. Inevitably, there is some loss to roundoff,
but the same applies to area estimates performed on the plane. There are few studies
with equal rigor published for other techniques. At one part in 1.2 × 105, Hipparchus is
clearly superior to the accuracy in area for any areas calculated on conformal projec-
tions. In normal zones, linear scale factors range up to one part in 4 × 103, so area scale
factors can be of the order of one in 8 × 103.

In the Hipparchus model, the spherical calculations for area used the local radius
of the ellipsoid (following the algorithm of Legendre 1806). The Hipparchus system
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promoted by Lukatela (1987) tessellates the ellipsoid into spherical Voronoi-like
cells.

Using either the method of Karney or Lukatela, areas can be estimated on the
ellipsoid. All area measurements, either performed on an equal-area projection or on
the ellipsoid, can suffer from numerical issues dealing with thin objects. There may be
rather limited attention to this kind of roundoff accumulation in GIS. Adding many small
items to a big accumulation loses digits (Kahan 1965, Higham 1993). The well-estab-
lished techniques to counter round-off losses are rarely deployed in practical software.
Still, this kind of issue is of much lower concern than the scale factor issues on conformal
projections (by a factor of 100, perhaps).

Line intersection and distance to a line on the ellipsoid

Beyond distance and area, GIS depends on additional geometric procedures. One of the
most notable in the history of GIS was polygon overlay. This capability provided the
basis to merge attributes attached to distinct geometric figures, and to implement
topological queries. At the base, this depends on the ability to calculate the intersection
of linework. Once established, an overlay engine does a number of additional proce-
dures, from point in polygon to topological cleaning. It is thus fundamental to opera-
tional GIS.

The basic geometric operation to calculate intersection on the plane begins with
calculating the distance from a point to a straight line (Little and Peucker 1979). Two
opposing signs on the oriented distance provide a better test for intersections than
many of the other solutions (Dougenik, personal communication, 1978). Even on the
plane, the intersection problem is non-trivial. Douglas (1974) had a famous rant titled ‘It
makes me so CROSS’, citing all the special checks required for coincident points, near
parallel cases, and numerical effects of roundoff. Saalfeld (1987) countered with ‘It
doesn’t make me nearly as CROSS’, citing better choices for representing lines. This
background prepares for further complication on the ellipsoid where, as discussed
previously, lines are not as well-behaved.

Karney (2013, p. 54) includes the intersection problem in his set of geodesic calcula-
tions, linked to what he calls the interception problem – the calculation of the point on a
line closest to a point off the line. This is an alternate way of formulating the distance
from a point to a line. For the ellipsoid, Karney suggests an iterative procedure using an
ellipsoidal gnomonic projection. The spherical gnomonic projection preserves great
circles as straight lines. On the ellipsoid, it is not as exact. Karney’s projection provides
a solution where intersections within 1000 km of the center are within 1.7 m of true
position anywhere along a geodesic (Karney 2013, p. 54). Karney is not satisfied with that
level of error, so he iterates the intersection procedure with the calculated intersection
as the new center of the projection, until convergence is reached. Since the epsilon
tolerance associated with many polygon overlay procedures is on the order of a meter,
the use of a single gnomonic for a region might be enough. The main point is that
Karney does not provide a procedure to calculate the intersection of two geodesics
directly on the ellipsoid. The reason is that points along a general geodesic do not hold
to a specific equation, as do points on a planar line. It makes the analytical geometry
quite difficult.
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Once the interception problem is solved on the gnomonic projection, the best
practice would be to calculate the distance using the ellipsoidal procedure provided
by Karney. Distances on the gnomonic projection are notoriously distorted, even quite
close to the origin. Alternatively, distance on the gnomonic can be adjusted by these
known scale factors.

Discussion

Initially I expected to reject planar geometry for GIS, and to reconstruct computational
geometry on the ellipsoid. The errors of projection use seemed too pervasive and
complex.

There are good solutions for precise calculation of distance on the ellipsoid. In some
user interfaces, the distance calculation allows ad hoc query of ellipsoidal distances,
although the database still contains perimeter and distance measures calculated in the
projection in which the coordinates are stored. The alternative requires some estimation
of scale factors on each projection surface which are a bit messy but not out of the
question. For area, the reverse seems to be the case. The calculation on the ellipsoid is
possible, but tricky. Calculating area on an equivalent projection gives a precise answer
with no need for re-engineering. Berk and Ferlan (2016) confirm this result in an
exhaustive study of all parcels in Slovenia. They also demonstrate that the choice of
projection parameters does matter.

The final case of line intersection does not seem feasible on the ellipsoid. Even the
most die-hard geodesist suggests that we use a particular projection (though not a
typical projection).

On balance, the case for direct calculation on the ellipsoid is not as strong as I
expected. Rather than rejecting projections, I conclude by recommending the use of
different projections tailored for each specific problem.

Technical conclusion

GIS professionals must learn to apply the appropriate projection for each kind of
calculation, following the advice of Tobler (1993). Blanket adoption of official (conformal)
coordinate systems leads to incorrect results, as documented above. The following
guidelines move from the easier cases to the harder ones. Regular users can immediately
adopt the easier ones, while Recommendation 3 requires change in the software sector.

Recommendation 1: area
The area column in spatial databases should only be calculated on an equivalent
projection. There are many to choose from, if appropriately designed for the study
area. As Usery and others (2003) document, choice of projection parameters do matter.
Berk and Ferlan (2016) confirm this result by obtaining much better performance from
an Alber’s Equal Area Conic than the Lambert (LAEA) often suggested by European
agencies. A user can simply specify a current display projection, then calculate the areas
into a new column.
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Recommendation 2: distance
For measures of length (perimeter), the correct result can be obtained rather easily from
a proper ellipsoidal calculation (for example, Vincenty 1975a; Karney 2013). This provides
a distance on the ellipsoid undistorted by the projection. Alternatively, a projection scale
factor can be estimated based on the end points. For a conformal projection, these
correction factors are a simple function of distance from the central meridian of a
cylindric projection such as UTM, or the standard parallels of a conic. A surface of
these values could be constructed using a raster map calculator. Producing this surface
should be an automatic function of any advanced software package (though currently
unavailable to my knowledge). As Girres (2012) points out, using a grid of correction
values would also permit adjustment of the distances to actual ground values, taking
elevation and slope distance into proper account with a digital elevation model. The
ground distance model may deliver a more useful answer than a distance derived on the
projection plane or the ellipsoid.

Recommendation 3: intersections and buffer distance
Given that most polygon overlay is calculated with a fuzzy tolerance, it may seem to be
too much effort to use the iterative procedure of Karney. Perhaps just using an ellipsoi-
dal gnomonic projection centered on the study area will be adequate for regions up to
1000 km. This projection will have the side effect of grossly distorting the area measure-
ments often included in the process. Until software developers recognize the issue, it
may be necessary to continue with the current solutions based on planar calculations on
conformal projections.

Ethical conclusion

Ultimately, the argument is not about the nuance of high order terms in some geodetic
equation or about the correct estimation procedure. Professionals practicing in the
realm of geographic representation must deal with the Earth as it is – round.
Ellipsoidal models provide the correct answer to many spatial queries, and the surrogate
answers calculated on some other object must be properly adjusted.

The current solutions produced by the default planar algorithms produce system-
atically biased results. Since these factors are totally predictable, a professional must
adjust for them.

Ignorance is no excuse.
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